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Abstract. The worldwide progress to date in experimental aodhputational studies on
composite frame structures having rectangular cetefilled steel tube (RCFT) beam-
columns and steel girders and braces has revedlett exceptional seismic resistance. In
this paper, a computational study to develop relighbased performance-based seismic
design guidelines of RCFT members is presentedhre®e-dimensional geometrically and
materially nonlinear mixed distributed-plasticitinite element formulation is developed for
RCFT beam-columns as part of complete compositaedrstructures. The element stiffness
matrices and internal forces are derived using eo-field mixed formulation, where
deformation and stress-resultant fields along theement length are interpolated
independently. Translational degrees-of-freedomtfe steel tube and the concrete are
defined separately to allow for differential sligsplacement along the element length
between the constituent materials, modeling cyuiterface and load transfer response
ranging from perfect slip to complete bond. Thedemal nonlinearity of the steel tube and
the concrete core is accounted for through assigmomprehensive cyclic nonlinear stress-
strain relations. Using an experimental databasweloped by the authors that documents
detailed progression of damage in RCFT membersfi@mdes, a comprehensive verification
study for the mixed finite element formulationasducted on RCFT members under various
loading conditions that highlights the complex mationship between the constitutive
materials and the progression of damage with tleeseposite members.
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1 INTRODUCTION

Based on the research experience initiated afeee#nthquakes of Northridge (1994) and
Kobe (1995), it is well recognized that reliabilibased performance-based design (PBD)
methodologies enable engineers to produce strisciuith predictable seismic performance
within prescribed levels of confidence [1]. Exhibg promising features of large energy
dissipation, strength, and stiffness, compositmé&s having RCFT columns and steel girders
have become increasingly popular in mid-rise amgh-nise buildings [2]. Developing PBD
methods tailored with respect to the charactessifcsuch systems is critical in extending and
spreading their use in earthquake prone regions.

In this paper, a finite element model of RCFT beantumns is presented to be used for
conducting nonlinear transient dynamic paramettiedies of composite frames under
earthquake loads to provide data for developin@b#ity-based performance-based design
guidelines for RCFTs. A beam-column element isveer based on mixed-finite element
principles following an Updated-Lagrangian disttéad plasticity approach. The finite
element formulation is able to capture a compreRiensinge of behavioral features of RCFT
beam-columns including flexural buckling, concretmfinement, local buckling of the steel
tube, and cyclic constitutive characteristics @& $teel and concrete. In addition, translational
degrees-of-freedom for the steel tube and the etmcore are defined separately to allow for
differential slip displacement along the elememigl between the constituent materials,
modeling cyclic interface and load transfer resporenging from perfect slip to complete
bond. The RCFT element formulation has been imptged in a general-purpose analysis
framework and verified with respect to a wide ranfjavailable experimental results.

2 RCFT MIXED FINITE ELEMENT FORMULATION

Various finite element techniques have been fortadlan the literature for second-order
inelastic analysis of RCFT members. One dimens$i¢b@) line elements based on the
Euler-Bernoulli beam-theory are often preferredstdid elements in order to reduce the
computation time, which becomes important when yaad) large 3D frame structures
subjected to dynamic loading. Available finite etsrh models typically are either
displacement-based [3, 4] or force-based [5] foatiohs relative to selecting the type
unknown parameters approximated over the domairis distinction of finite element
models determines the accuracy and complexity efniethods to obtain element stiffness
and internal forces. RCFT members exhibit nonliregalic response attributed to both local
and global geometric instability and several inetaphenomena of the concrete core (e.g.,
concrete cracking, concrete crushing) and the stbel (e.g., cyclic hardening, Bauschinger
effect). Therefore, a rational simulation of thed-deformation response of RCFT members
requires incorporating refined constitutive relasocoupled with accounting for local and
flexural buckling of the member.

In the current study, a mixed distributed plasfidieam-column element is derived to
simulate the static, quasi-static, and transienhadyic response of RCFT members.
Following the two field form of the Hellinger-Reissr variational principle, independent
interpolation functions are introduced for bothptesements and internal element forces [6].
This approach allows accurate representation ofimear curvature fields since it is possible
to obtain realistic distributions of element int&rriorces [7]. Therefore, accuracy can be
achieved with fewer finite elements along the eleimkength compared to equivalent
displacement-based formulations. Since internameht forces are interpolated along the
element length, equilibrium is strictly satisfieBorce-based formulations exhibit similar
characteristics as the mixed finite element formoes with respect to the estimation of
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nonlinear curvature fields. However, the mixeditéinelement formulation alleviates the
complexity of force-based formulations with resptrincorporating geometric nonlinearity
and the slip response of RCFT members.

2.1 Kinematic Relations

In this RCFT formulation, the equations to derikie element stiffness matrix and internal
forces are established within a corotational (rejueference frame, where rigid body modes
are excluded in the derivations. Shear deformatiare neglected and a linear elastic
torsional response is assumed along the elemegthlenThe cross-sectional deformations (

derived from cross-sectional forces, addierived from nodal displacements) along the
element length are defined to include axial strginpand curvaturesi(, ,«,) introduced for

the steel tube and the concrete core separatelg. ddiormation vectorsl andd are
presented in Equations 1, where right supersctgitand “c” identify the quantities defined
for the steel tube and the concrete core, resmdgtiwariables stated in bold represent either
vector or matrix quantities. Due to the rotatiocampatibility (discussed in Section 2.2), the
steel tube and the concrete core are assumedhio #it¢ same curvature values.
T A T
d=|& «; K, ssf(jf(j] : d:[e K; K, (1)
The axial strain is defined through the Green-Lageastrain measure, which is expressed
in terms of axial ¢) and transverse deformation fields, (v) as given in Equation 2. The
curvatures are obtained by evaluating the secondatizes of the transverse deformation
fields. In Equation 2, the operators’“and “x’ denote differentiations to the first and
second degree, respectively.
2 2 2
£=u, +05x (U,x) + Q5x (yx) + Q5 (wx) v Ky TV Ky T W (2)

, XX

Similarly, the cross section forceB | are assumed to have axial forde)(and moment ¢,
M,) components defined for the steel tube and thereta core independently (Equation 3).

.
D:[P MS MS P MS My] (3)

The force transfer between the steel tube anddherete core is provided through a layer
of nonlinear springs located at the interface. Teéormation of the slip IayercTQC) is

expressed in terms of axial deformation fieldshef steel tubey(*) and the concrete core)
as stated in Equation 4. The stress generateleainterface D, ) is obtained through a

cyclic constitutive relation assigned to the stipdr [4].

A

d,=u-u° 4)

2.2 Finite Element Discretization

Adopting the prior work by [4], the proposed eleinbas 18 global degree-of-freedoms
(DOFs) with separate translational DOFs for thelstgbe and the concrete core. At a single
node with 9 DOFs, the first 3 DOFs correspond éelstranslations. Since the concrete core
is placed inside the steel tube, the rotationsheftivo media are assumed to be the same.
Therefore, the second set of 3 DOFs represents thetlsteel tube and the concrete core
rotations. The final 3 DOFs are defined for thaearete core translations. For an arbitrarily
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oriented element in 3D space, differential movenwamt only occur in the axial direction due
to lateral restraint provided by the steel tubeherEfore, shear translations of the steel tube
and the concrete core are enforced to be equaldo ether by the penalty function method
[4]. This process is applied at the global lewveklsat it does not exhibit any difference with
respect to the type of finite element formulation.

In the natural coordinates, the nodal displacemaeator (q) is assumed to have a total of

13 DOFs including deformation of the slip laye®), axial deformations between thend
andj-end of the elemente(, €°), rotations with respect to theend and-end of the element
(€,6.,6..,6,6;,6;,6 ,6), and axial deformations between tkend and mid-joint of the

yi 1Yy Mzio Hzjr Myior My Mzio V)
element (e, €,). The mid-joint, for which two axial deformatiorsre assigned, is
introduced to estimate the distribution of axiaffaimations accurately via higher order
interpolation functions. The rotational DOFs inetatural coordinates are defined
independently for the steel tube and the concrate despite the fact that they are enforced to
be the same. This type of decomposition of rotatfiaratural DOFs allows the calculation of
the concrete core and the steel tube shear foradmsgdtransformations into the global
coordinates, where independent shear DOFs exighéotwo media. The axial deformation
fields along the element length are approximatedenms of natural nodal deformations
through quadratic interpolation functions. Thensneerse deformation fields are interpolated
along the element length using cubic Hermitianrpéation functions.

The energy equivalent nodal force3) corresponding to the natural nodal displacements

include axial forces (R° , P° , BR° , B®* ) and bending moments
(M7, M2, M2 MS M2, M2, M7, M) defined ati-end andj-end of the element for the

steel tube and the concrete core independentlye distributions of nodal forces along the
element length are approximated using linear imfatpn functions. However, the additional
moments due to th®- o effects are incorporated into the bending momesttildutions [7].

Once the interpolation function approximations loé deformation fields are substituted
into the kinematic relations in Equations 1 andh#, cross-sectional strain measures can be
represented in terms of the natural nodal displacemector as given below:

&=Naxq,&SC:Nasc><q (5)

Similarly, introducing the interpolation functionfined for the axial forces and bending
moments, Equation 6 is derived to express the @estonal forces in terms of nodal forces
in the natural coordinates.

D=NpxQ (6)

In Equations 5 and 6, the term§, N(j , andN, are the matrix quantities resulting from
the process of introducing deformation and forcgritiutions into the cross-section strain
vector, slip-layer deformation, and cross-sectmneé vector, respectively.

2.3 Element Equilibrium

The current formulation starts by expressing théual work equation of equilibrium as
given in Equation 7, where the work done by theeel loads is balanced by the internal
stresses. Modeling the differential movement betwthe concrete core and the steel tube,
the volumes of the two media are separated andiditianal term is introduced to account
for the energy due to slip. In the element eqiiiliim, the Updated-Lagrangian description of
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motion is adopted such that all the kinematic aaticsvariables of the current configuration
(C2) are defined with respect to the most convegediguration (C1). The nomenclature by
[8] is employed while developing the governing deguss. Both left subscripts and
superscripts identify the attained state of theddeddy as either C1 or C2. A left superscript
denotes the configuration in which the quantityeslplace while a left subscript shows the
configuration that the quantity is referred toA variable defined with a subscript without any
superscript is considered as an increment betwee@61 and C2 configurations.

L L

[ad™x2 D xdx+ [ o,dlx2D, xdil+ [ o x2uc xausx Ve + [ 1o*x2usxdux o Ve

c 1 -sc
0 0 e 1ys (7)
J. 1’ucxiuc X51UCXd1VC+ J. l’usxiusxalusxdlvs_aquxf » =0
lvc lvs

where | is the interface are¥, is the element volumep is the unit weightyis the viscosity
parameteru is the velocity field,u is the acceleration fieldy is the nodal displacement
vector in natural coordinates, aQy, is the external load vector in natural coordinates

24 Compatibility

The compatibility equation of RCFT members can taged in terms of cross-sectional
strains as given Equation 8. Since both nodallatgments and internal forces are treated as
primary variables, it is possible to obtain twosset cross-sectional strains along the element
length, d andd. Enforcement of the compatibility equation ensuh@ving the same strain
values from both nodal displacements and interakls once a converged state is attained.

g
[ DT x(,d-,d) xd'x= 0 (8)

0

25 Heéllinger-Reissner Variational Principle

The Hellinger-Reissner variational principle foetRCFT beam-column element can be
derived by combining the element equilibrium anchpatibility equations of Equations 7 and
8. Equations 5 and 6 are then substituted intadhelting expression and the final format of
the Hellinger-Reissner variational principle becsras given in Equation 9, where there exist
two separate expressions. The terms gohind V correspond to the equilibrium and
compatibility parts, respectively.

M

3 1
[ NG EDxd e [N, % 2D x 1= Ryt [ NEx(d- f)xdx+ 't .
° “ : V= [AND x(d-d)xdx=0  (9)
g= [IlpcxlleTxllexdl\/c+j bstu;xNusxd\/ﬂxlﬁ+ =0 0
e Ve
Ul;fxlexlNchd\/uj ex ]Nu;xNqud\/ﬂxlﬁ
L \ive e i

In Equation 9’Naa and N, are obtained as the first variations I‘cbg andNa ,

respectively. N, can be derived by manipulating the expressions fitee first variation of

Ny, (D =Ny, xd+ Ny, xdQ). NS andN; are derived once the velocity and acceleration
fields of the concrete core and the steel tubeegpeessed in terms of their nodal valugsig
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the nodal velocity in natural coordinatég,s the nodal displacement in natural coordinates)
with the use of deformation interpolation functiafescribed in Section 2.2.

In the current formulation, the cross-section fercan be obtained based on two different
methods. The nodal forces are interpolated albagtement length as defined in Equation 6
to obtainD. In addition, cross-section force®{) can also be calculated by performing
numerical integration of the stresses generatdtleamaterial fibers. The balance between
these two sets of forces must be satisfied alonth e element equilibrium and
compatibility equations. The mathematical expressod the equilibrium equation at the
cross-section level( ) is stated below.

U=iD;-?D=0 (10)

The nonlinear nature of Equations 9 and 10 requiresolution of element displacements
and forces through an incremental-iterative albamit Performing linearization of the
aforementioned equations, the stiffness matricesiaternal force expressions are derived.
The linearization process is conducted by expanthegequations about their current state
with respect to the their state variabBs d, q, ¢, ¢, Q, andQ,,,. The internal forces are
derived using the linearized forms of Equationsr@ 40 such that while executing the
incremental-iterative algorithm, the resulting ulalpges are transferred to the next iteration
until convergence is achieved at the global level.

2.6 Element Stiffness

The element stiffness matrix is calculated at thgiftming of every iterationj() in a time
step (). Assembling the global stiffness matrix, theremental nodal displacement&d)
corresponding to the given time step can be sol&sdyiven in Equation 11, the terms of the
element stiffness matrix K ) are derived from linearization of the element ikigum
expression ¢) in Equation 9.

o[k eate (o) i) } (1)
K=

(1) +(m3) - (zHE) ) (emi) < (o! + mi-2mL)

SC 1 s¢ Jd sc
0

L
wheré/ K is the geometric stiffness matrix [£]K . = {I N g x2kdx'N Xdlx]

L
( k.. is the stiffness of the slip layer (force/lerdjh °G, = jiNglxlN(ﬁ xd'x ,
0
lL 1L
G, = f NG XINp, xd'X, 2H ;= [ 2N T, x % % 2N, xd’x(Kis the cross-section stiffness
o]

D1 1
0
L
[4]), 2H, = ijglx 2k 1x 2N ,, xd'x, Myis the matrix resulting from linearization of the
0
compatibility expression\ )

2.7 Element Internal Force

In an incremental-iterative nonlinear analysis, dieéermination of internal element forces
is required to check the convergence of the cursehition. In addition, recovery of the
internal element forces is needed to update timstef the geometric stiffness matrix [8]. A
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summary of the steps to obtain the internal elentheadl vector is portrayed in Figure 1
assuming that the analysis is proceeding fiBiieration toj+1 iteration of asingletime step.
In the current formulation, the element internakcéo determination initiates as the

incremental nodal displacementsq) are obtained. The cross-section strain vect&r)se(nd

slip layer deformations cfsc) are updated by substitutingg into the kinematic relations
described in Section 2.1. The incremental nodaef® (AQ) are determined by multiplying

the inverse of the element flexibilityH(;}) with the compatibility expression of Equation 9.
Updating the nodal force vectoQ(), the cross-section force®( are determined by means

of force interpolation functions. The cross-satteguilibrium described in Equation 10 is
evaluated and the resulting unbalances are meltipliy the inverse of the cross-section
stiffnress (k™) to obtain the cross-section strain vectors)( Despite the fact that slip
deformation violates the assumption of plane-sasti@maining plane, the strain profile of
the cross section is still taken as linear whillewating the strains of the steel and concrete
fibers of the RCFT cross-section. The constitut®ations defined for the steel and concrete
fibers are utilized to obtain the cross-sectiorcéovector O, ) and cross-section stiffness

matrix (k) through numerical integration over the materibéfs. The constitutive relation
assigned to the slip layer is used to update fffaests of the interfacek( ). The information

acquired up to this point is sufficient to calcel#ite terms described in thB step of Figure
1. These terms are then used to quantify the sgjme of the element internal forces in the
7" step of Figure 1.

3 CONSTITUTIVE RELATIONS

The material nonlinearity of the RCFT member is idated employing a fiber-based
distributed plasticity approach. The element sr®ections located at the interpolation points
are divided into individual steel and concrete ffbeEach material fiber is associated with a
cyclic constitutive relation that is traced throoghthe analysis.

The confinement in RCFT members is not considecedatise an enhancement in the
compressive strength of concrete. However, thdilducachieved by the concrete core is
significantly improved. In this research, the i cyclic concrete model by [9] is adapted
for RCFT members. Envelope curves define the baresl of the stress-strain response in
tension and in compression. The stress-strainoresp ranging from the compression to
tension envelope is represented through connectinges. Transition curves simulate the
shift between the connecting curves going in ogpodirections. The negative envelope
curve of RCFT members were derived by [10] basetheraxially-loaded column tests in the
literature. An ascending stress-strain responsdasi to that of plain concrete is assumed
until the attainment of the peak compressive sttenghe ascending response is followed by
a linear softening region where the degradatiorpesles derived as a function of the
compressive strength of the concrete core and staeds of the steel tube. At high strain
levels, the compressive envelope curve is assumeadergo a constant stress region. The
cyclic rules represented by the connecting andsifian curves are kept largely as provided
by [9]. However, the existing cyclic rules wereggemented through introducing several new
rules to capture the complex strain histories R&FT members experience during quasi-
static and dynamic loading conditions. For exampév unloading and reloading curves are
introduced as presented in Figure 2, which detireectyclic rule following an unloading type
response at the strain levels beyond the latesiadirig strain prior to reaching to the target
strain on the envelope curves.
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Update nodal displacemenrlsqj”and cross-section stra'lrtﬂj+1 (Equation 5)
Evaluate incremental element forcasy i+t = (fH;ll)j xV i, where:

L

vi=|?

1
0

(Ngl)j « (1aj+1_ldj_j(k—1)j « (ij-ng))Xd’)(

3. Update element nodal forceé@’”) and cross-section forcesf[l)j*l) (Equation 6)

Evaluate the cross-section strain vectors from himdees
j+ 1) j+ 2 j -1 H
(d) =2 (k) x (21([))'k 1. 1(Dz):<) for (k= 1;k< Number of Sectior)s

jt1 2

; 2(— j+1
5. Evaluate’k,**, 1(ksc) (Dz): for (k= 1;k < Number of Sectior)s

k "1
2+l 2p j+l + + A 1
6. Evaluate’G,**, K., J.lN;&SCxlDSC xdl, J'ZI(NSZ)‘ "x(,d - d My xdxs Mg,
1 0
2 jt1 2 j+1 . .
l(Hll)J , l(le)J , V ! (see Equations 9, 10, 11)
7. Evaluate the element internal forces
2Qu=i(6]) Qe ix,a e [ (N D, xd +

int 1
4

1 1

o) ey e (361) e M=) i) v

Figure 1: Determination of internal element forces.
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Figure 2:Unloading response between the latest unloadingtpaind the envelope curves.

The uniaxial bounding surface model by [11] is addpo simulate the cyclic stress-strain
response of the steel tube of RCFT members. Thagrhena of gradual stiffness reduction,
reduction in the elastic zone, and the Bauschieffect are accounted for in the model. The
scope of the current research study is limited @R members having cold-formed steel
tubes. Therefore, the model by [11] was modifedtiude the effect of residual stresses by
introducing a different initial plastic strairg,) for the flat and corner regions of the steel

tube, as shown in Figure 3. Local buckling of #ieel tube is accounted for assuming a
linear strength degradation once the plastic sifaj exceeds a limiting value &f,, as can

be seen in Figure 3.

4 VERIFICATION STUDIES

The mixed finite element formulation developed REFT beam-columns is implemented
in [12] along with the steel and concrete cycliastitutive relations. In addition, a steel
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beam-column element is also developed and implesdensing the mixed finite element
principles to serve as girders in composite frames.
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Figure 3: Residual stress and local buckling beidrani the steel tube.

A wide range of experiments on RCFT members anchdeawere used to verify the
formulation; five are reported here. The firstifieation study is conducted on a non-
proportionally loaded RCFT beam-column tested ©8].[1The specimen is subjected to a
constant axial load and uniform bending momentn®&i and roller support conditions are
introduced at the ends of the specimens. The sisalg performed using the Newton-
Raphson solution scheme with constant displacereatength method near the limit point
of the analysis [8]. In Figure 4, the comparisdmexperimental and computational results is
presented. The measured material and geometriegiep of the specimens are also given
including yield strength of the steel tubg,{, compressive strength of concretg' (), depth

(D) over thicknesst() ratio, length ) over depth ratio D), and axial load ratioR/ P,).

It is found that using 2 elements per member witht8gration points produced satisfactory
results. The second verification study is perfatman a proportionally-loaded simply-
supported RCFT column, where two steel girderscamnected at the mid-height through
shear tabs [14]. The loading condition involvesaxml loading at the top of the RCFT
column that is increased in proportion to the sheading acting on both of the steel girders.
The shear loading is transferred to the concrete ttwough the interface of the steel tube and
the concrete core. In Figure 4, the comparisah®flip response along the element length is
presented. The mesh size is determined basedeoreported slip data. For an analysis
conducted with 10 elements and 3 integration ppatgood correlation is achieved between
the experimental and computational results. Qstgie cyclic simulations are then shown
for two RCFT specimens from the literature [15-18he first specimen is a 3D subassembly
with steel girders framing into an RCFT beam-columntwo perpendicular directions
simulating a 3D loading condition [16]. A pinne@RT column is subjected to a constant
axial load at the top. A constant gravity loadpplied on to the steel girder framing to the
RCFT column in the out-of-plane direction. Antigyretric cyclic shear loading is generated
through the steel girders that are in plane with RCFT column. The steel girders are
modeled with 1 element and 3 integration points tedRCFT column is simulated through 2
elements and 3 integration points. The cyclic shead vs. drift rotation response obtained
from the analysis and the experiment exhibits angtrcorrelation as shown in Figure 5. A
portal frame specimen having two RCFT columns arsteal girder in between is analyzed
under constant axial load and cyclically applie@ahloading, putting the columns into
double curvature [16]. Both the RCFT columns anmel steel girder are modeled using 3
elements and 3 integration points. As can be &eem Figure 5, the analysis estimated the
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experimental shear vs. drift ratio response witbdgaccuracy. The final verification example
involves a nonlinear time-history analysis of apragimately half-scale multistory RCFT
frame by [17] as portrayed in Figure 6. The suitetwas subjected to acceleration records
using the pseudo-dynamic testing method. In thelyais model, 3 elements per member
with 3 integration points and 4 elements per membgr 3 integration points are used for the
RCFT columns and steel girders, respectively. Nbeemark-Betay = 0.5, = 0.25) time
integration method is employed to solve for thepoese of the structure. The 1994
Northridge-Canoga Park acceleration record scalethé design basis response spectra is
applied to the structure. The mass of the streagiassumed to be lumped to the nodes of the
leaning column at the story heights. The leanimigran is connected to the structure through
rigid links attached to the mid-point of the girgl@t the both bays of the structure. Stiffness
and mass proportional damping are introduced witdpgrtionality factors of 0.001194 and
0.154667, respectively, as recommended by [17].e Titeasured geometric and material
properties of structural members are utilized mdhalysis. The comparison of experimental
and computational results is performed with respecttory shear vs. drift response of the
structure. As can be seen from Figure 7, goocktadion is achieved between the two sets of
the data for ¥ and 2° story of the structure.
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Figure 4: Non-proportionally loaded RCFT beam-cahsm
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Figure 5: Non-proportionally loaded RCFT beam-cahsm

5 CONCLUSIONS

A new mixed finite element formulation is introdacdor fully nonlinear static and
dynamic analysis of RCFT frames. The following agks can be inferred from the analysis
results using the proposed formulation:

- The mixed finite element formulation is capabfepooducing accurate and robust

simulations of RCFT beam-columns experiencing stédacurvatures. Utilizing 2

10
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finite elements per member with 3 interpolation ni®i often yielded satisfactory
comparisons with the experiments both in the hamdpand softening regions of the
load deformation response.

- The constitutive relations adopted for the stabk and the concrete core capture the
limit states of concrete cracking, concrete crughind local buckling of the steel
tube with acceptable accuracy. They are foundetodbust even under complicated
strain histories resulting from the irregularitytbé ground motion records.

- This formulation is suitable for analyzing contglethree-dimensional composite
frame structures, including either braced or unddasubjected to static or transient
dynamic loading. The formulation includes modelofgdifferential slip between the
steel tube and concrete core in the RCFT, whiclpadicularly important in the
connection regions of braced frames.
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Figure 6: RCFT test structure by Herrera [17].
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Figure 7: Story shear vs. story drift response.
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