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Abstract. The worldwide progress to date in experimental and computational studies on 
composite frame structures having rectangular concrete-filled steel tube (RCFT) beam-
columns and steel girders and braces has revealed their exceptional seismic resistance.  In 
this paper, a computational study to develop reliability-based performance-based seismic 
design guidelines of RCFT members is presented.  A three-dimensional geometrically and 
materially nonlinear mixed distributed-plasticity finite element formulation is developed for 
RCFT beam-columns as part of complete composite frame structures.  The element stiffness 
matrices and internal forces are derived using a two-field mixed formulation, where 
deformation and stress-resultant fields along the element length are interpolated 
independently.  Translational degrees-of-freedom for the steel tube and the concrete are 
defined separately to allow for differential slip displacement along the element length 
between the constituent materials, modeling cyclic interface and load transfer response 
ranging from perfect slip to complete bond.  The material nonlinearity of the steel tube and 
the concrete core is accounted for through assigning comprehensive cyclic nonlinear stress-
strain relations.  Using an experimental database developed by the authors that documents 
detailed progression of damage in RCFT members and frames, a comprehensive verification 
study for the mixed finite element formulation is conducted on RCFT members under various 
loading conditions that highlights the complex interrelationship between the constitutive 
materials and the progression of damage with these composite members. 
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1 INTRODUCTION 

Based on the research experience initiated after the earthquakes of Northridge (1994) and 
Kobe (1995), it is well recognized that reliability-based performance-based design (PBD) 
methodologies enable engineers to produce structures with predictable seismic performance 
within prescribed levels of confidence [1].  Exhibiting promising features of large energy 
dissipation, strength, and stiffness, composite frames having RCFT columns and steel girders 
have become increasingly popular in mid-rise and high-rise buildings [2].  Developing PBD 
methods tailored with respect to the characteristics of such systems is critical in extending and 
spreading their use in earthquake prone regions.   

In this paper, a finite element model of RCFT beam-columns is presented to be used for 
conducting nonlinear transient dynamic parametric studies of composite frames under 
earthquake loads to provide data for developing reliability-based performance-based design 
guidelines for RCFTs.  A beam-column element is derived based on mixed-finite element 
principles following an Updated-Lagrangian distributed plasticity approach.  The finite 
element formulation is able to capture a comprehensive range of behavioral features of RCFT 
beam-columns including flexural buckling, concrete confinement, local buckling of the steel 
tube, and cyclic constitutive characteristics of the steel and concrete.  In addition, translational 
degrees-of-freedom for the steel tube and the concrete core are defined separately to allow for 
differential slip displacement along the element length between the constituent materials, 
modeling cyclic interface and load transfer response ranging from perfect slip to complete 
bond.  The RCFT element formulation has been implemented in a general-purpose analysis 
framework and verified with respect to a wide range of available experimental results. 

2 RCFT MIXED FINITE ELEMENT FORMULATION 

Various finite element techniques have been formulated in the literature for second-order 
inelastic analysis of RCFT members.  One dimensional (1D) line elements based on the 
Euler-Bernoulli beam-theory are often preferred to solid elements in order to reduce the 
computation time, which becomes important when analyzing large 3D frame structures 
subjected to dynamic loading. Available finite element models typically are either 
displacement-based [3, 4] or force-based [5] formulations relative to selecting the type 
unknown parameters approximated over the domain.  This distinction of finite element 
models determines the accuracy and complexity of the methods to obtain element stiffness 
and internal forces.  RCFT members exhibit nonlinear cyclic response attributed to both local 
and global geometric instability and several inelastic phenomena of the concrete core (e.g., 
concrete cracking, concrete crushing) and the steel tube (e.g., cyclic hardening, Bauschinger 
effect).  Therefore, a rational simulation of the load-deformation response of RCFT members 
requires incorporating refined constitutive relations coupled with accounting for local and 
flexural buckling of the member. 

In the current study, a mixed distributed plasticity beam-column element is derived to 
simulate the static, quasi-static, and transient dynamic response of RCFT members.   
Following the two field form of the Hellinger-Reissner variational principle, independent 
interpolation functions are introduced for both displacements and internal element forces [6].  
This approach allows accurate representation of nonlinear curvature fields since it is possible 
to obtain realistic distributions of element internal forces [7].  Therefore, accuracy can be 
achieved with fewer finite elements along the element length compared to equivalent 
displacement-based formulations.  Since internal element forces are interpolated along the 
element length, equilibrium is strictly satisfied. Force-based formulations exhibit similar 
characteristics as the mixed finite element formulations with respect to the estimation of 
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nonlinear curvature fields.  However, the mixed finite element formulation alleviates the 
complexity of force-based formulations with respect to incorporating geometric nonlinearity 
and the slip response of RCFT members. 

2.1 Kinematic Relations 

In this RCFT formulation, the equations to derive the element stiffness matrix and internal 
forces are established within a corotational (natural) reference frame, where rigid body modes 
are excluded in the derivations.  Shear deformations are neglected and a linear elastic 
torsional response is assumed along the element length.   The cross-sectional deformations (d  
derived from cross-sectional forces, and $d derived from nodal displacements) along the 
element length are defined to include axial strains (ε ) and curvatures (κ y ,κ z ) introduced for 

the steel tube and the concrete core separately. The deformation vectors d  and $d  are 
presented in Equations 1, where right superscripts “s” and “c” identify the quantities defined 
for the steel tube and the concrete core, respectively.  Variables stated in bold represent either 
vector or matrix quantities. Due to the rotational compatibility (discussed in Section 2.2), the 
steel tube and the concrete core are assumed to attain the same curvature values.  
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The axial strain is defined through the Green-Lagrange strain measure, which is expressed 
in terms of axial (u ) and transverse deformation fields (v , w ) as given in Equation 2.  The 
curvatures are obtained by evaluating the second derivatives of the transverse deformation 
fields.  In Equation 2, the operators “,x” and “,xx” denote differentiations to the first and 
second degree, respectively. 

 ( ) ( ) ( )ε = + × + × + ×u u v wx x x x, , , ,. . .05 05 05
2 2 2

, κ z xxv= , , κ y xxw= ,  (2)  

Similarly, the cross section forces (D ) are assumed to have axial force (P) and moment (M y , 

M z) components defined for the steel tube and the concrete core independently (Equation 3). 
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The force transfer between the steel tube and the concrete core is provided through a layer 

of nonlinear springs located at the interface.  The deformation of the slip layer ($dsc ) is 

expressed in terms of axial deformation fields of the steel tube (us ) and the concrete core (uc ) 
as stated in Equation 4.  The stress generated at the interface (Dsc) is obtained through a 
cyclic constitutive relation assigned to the slip layer [4]. 

  $d u usc
s c= −  (4)  

2.2 Finite Element Discretization 

Adopting the prior work by [4], the proposed element has 18 global degree-of-freedoms 
(DOFs) with separate translational DOFs for the steel tube and the concrete core.  At a single 
node with 9 DOFs, the first 3 DOFs correspond to steel translations.  Since the concrete core 
is placed inside the steel tube, the rotations of the two media are assumed to be the same.  
Therefore, the second set of 3 DOFs represents both the steel tube and the concrete core 
rotations.  The final 3 DOFs are defined for the concrete core translations.  For an arbitrarily 
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oriented element in 3D space, differential movement can only occur in the axial direction due 
to lateral restraint provided by the steel tube.  Therefore, shear translations of the steel tube 
and the concrete core are enforced to be equal to each other by the penalty function method 
[4].  This process is applied at the global level so that it does not exhibit any difference with 
respect to the type of finite element formulation. 

In the natural coordinates, the nodal displacement vector (q ) is assumed to have a total of 

13 DOFs including deformation of the slip layer (esc), axial deformations between the i-end 
and j-end of the element (es ,ec ), rotations with respect to the i-end and j-end of the element 
(θyi

c ,θyj
c ,θzi

c ,θzj
c ,θyi

s ,θyj
s ,θzi

s ,θzj
s ), and axial deformations between the i-end and mid-joint of the 

element (em
c , em

s ).  The mid-joint, for which two axial deformations are assigned, is 
introduced to estimate the distribution of axial deformations accurately via higher order 
interpolation functions.  The rotational DOFs in the natural coordinates are defined 
independently for the steel tube and the concrete core despite the fact that they are enforced to 
be the same. This type of decomposition of rotational natural DOFs allows the calculation of 
the concrete core and the steel tube shear forces during transformations into the global 
coordinates, where independent shear DOFs exist for the two media.  The axial deformation 
fields along the element length are approximated in terms of natural nodal deformations 
through quadratic interpolation functions.  The transverse deformation fields are interpolated 
along the element length using cubic Hermitian interpolation functions.     

The energy equivalent nodal forces (Q ) corresponding to the natural nodal displacements 

include axial forces ( Pi
c , Pj

c , Pi
s , Pi

s ) and bending moments 

( M yi
c , M yj

c , M yi
s , M yj

s , M zi
c , M zj

c , M zi
s , M zj

s ) defined at i-end and j-end of the element for the 

steel tube and the concrete core independently.  The distributions of nodal forces along the 
element length are approximated using linear interpolation functions.  However, the additional 
moments due to the P-δ  effects are incorporated into the bending moment distributions [7]. 

Once the interpolation function approximations of the deformation fields are substituted 
into the kinematic relations in Equations 1 and 4, the cross-sectional strain measures can be 
represented in terms of the natural nodal displacement vector as given below: 

       $
$

d = N q
d

× , $ $dsc dsc
= ×N q  (5) 

Similarly, introducing the interpolation functions defined for the axial forces and bending 
moments, Equation 6 is derived to express the cross-sectional forces in terms of nodal forces 
in the natural coordinates.  

 D N Q= ×D1  (6) 

In Equations 5 and 6, the termsN
$d
, N

$dsc
, and N D1  are the matrix quantities resulting from 

the process of introducing deformation and force distributions into the cross-section strain 
vector, slip-layer deformation, and cross-section force vector, respectively.      

2.3 Element Equilibrium  

The current formulation starts by expressing the virtual work equation of equilibrium as 
given in Equation 7, where the work done by the external loads is balanced by the internal 
stresses.  Modeling the differential movement between the concrete core and the steel tube, 
the volumes of the two media are separated and an additional term is introduced to account 
for the energy due to slip.  In the element equilibrium, the Updated-Lagrangian description of 
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motion is adopted such that all the kinematic and static variables of the current configuration 
(C2) are defined with respect to the most converged configuration (C1).  The nomenclature by 
[8] is employed while developing the governing equations.  Both left subscripts and 
superscripts identify the attained state of the solid body as either C1 or C2.  A left superscript 
denotes the configuration in which the quantity takes place while a left subscript shows the 
configuration that the quantity is referred to.    A variable defined with a subscript without any 
superscript is considered as an increment between the C1 and C2 configurations.   
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 (7)      

where I  is the interface area, V is the element volume, ρ  is the unit weight,µ is the viscosity 
parameter, &u  is the velocity field, &&u  is the acceleration field, q  is the nodal displacement 
vector in natural coordinates, and Qext  is the external load vector in natural coordinates 

2.4 Compatibility  

The compatibility equation of RCFT members can be stated in terms of cross-sectional 
strains as given Equation 8.  Since both nodal displacements and internal forces are treated as 
primary variables, it is possible to obtain two sets of cross-sectional strains along the element 
length, d and $d .  Enforcement of the compatibility equation ensures having the same strain 
values from both nodal displacements and internal forces once a converged state is attained. 
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2.5 Hellinger-Reissner Variational Principle 

The Hellinger-Reissner variational principle for the RCFT beam-column element can be 
derived by combining the element equilibrium and compatibility equations of Equations 7 and 
8.  Equations 5 and 6 are then substituted into the resulting expression and the final format of 
the Hellinger-Reissner variational principle becomes as given in Equation 9, where there exist 
two separate expressions. The terms of g and V correspond to the equilibrium and 
compatibility parts, respectively.  
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In Equation 9, N δ $d
and N δ $dsc

are obtained as the first variations ofN
$d

 and N
$dsc

, 

respectively.  N D2  can be derived by manipulating the expressions from the first variation of 

N D1 (δ δ δD N q N Q= × + ×D D2 1 ).  N u
c  andN u

s  are derived once the velocity and acceleration 
fields of the concrete core and the steel tube are expressed in terms of their nodal values (&q  is 
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the nodal velocity in natural coordinates, &&q  is the nodal displacement in natural coordinates) 
with the use of deformation interpolation functions described in Section 2.2.   

In the current formulation, the cross-section forces can be obtained based on two different 
methods.  The nodal forces are interpolated along the element length as defined in Equation 6 
to obtainD .  In addition, cross-section forces (DΣ ) can also be calculated by performing 
numerical integration of the stresses generated at the material fibers.  The balance between 
these two sets of forces must be satisfied along with the element equilibrium and 
compatibility equations. The mathematical expression of the equilibrium equation at the 
cross-section level (U ) is stated below. 

 U D D= − =1
2

1
2 0Σ   (10)    

The nonlinear nature of Equations 9 and 10 requires the solution of element displacements 
and forces through an incremental-iterative algorithm.  Performing linearization of the 
aforementioned equations, the stiffness matrices and internal force expressions are derived.   
The linearization process is conducted by expanding the equations about their current state 
with respect to the their state variables D , d , q , &q , &&q , Q , and Qext .  The internal forces are 
derived using the linearized forms of Equations 9 and 10 such that while executing the 
incremental-iterative algorithm, the resulting unbalances are transferred to the next iteration 
until convergence is achieved at the global level.   

2.6 Element Stiffness  

The element stiffness matrix is calculated at the beginning of every iteration (j ) in a time 
step (i ).  Assembling the global stiffness matrix, the incremental nodal displacements (∆ q ) 
corresponding to the given time step can be solved. As given in Equation 11, the terms of the 
element stiffness matrix (K ) are derived from linearization of the element equilibrium 
expression (g ) in Equation 9. 
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2 K g is the geometric stiffness matrix [4], 1
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2.7 Element Internal Force 

In an incremental-iterative nonlinear analysis, the determination of internal element forces 
is required to check the convergence of the current solution.  In addition, recovery of the 
internal element forces is needed to update the terms of the geometric stiffness matrix [8].  A 
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summary of the steps to obtain the internal element load vector is portrayed in Figure 1 
assuming that the analysis is proceeding from jth iteration to j+1 iteration of a single time step.  
In the current formulation, the element internal force determination initiates as the 

incremental nodal displacements (∆ q ) are obtained.  The cross-section strain vectors ($d ) and 

slip layer deformations ($d sc ) are updated by substituting ∆ q  into the kinematic relations 
described in Section 2.1.  The incremental nodal forces (∆ Q ) are determined by multiplying 

the inverse of the element flexibility (H11
-1 ) with the compatibility expression of Equation 9.  

Updating the nodal force vector (Q ), the cross-section forces (D ) are determined by means 
of force interpolation functions.  The cross-section equilibrium described in Equation 10 is 
evaluated and the resulting unbalances are multiplied by the inverse of the cross-section 
stiffness (k -1 ) to obtain the cross-section strain vectors (d ).  Despite the fact that slip 
deformation violates the assumption of plane-sections remaining plane, the strain profile of 
the cross section is still taken as linear while calculating the strains of the steel and concrete 
fibers of the RCFT cross-section.   The constitutive relations defined for the steel and concrete 
fibers are utilized to obtain the cross-section force vector (DΣ ) and cross-section stiffness 
matrix (k ) through numerical integration over the material fibers.  The constitutive relation 
assigned to the slip layer is used to update the stiffness of the interface (ksc).  The information 
acquired up to this point is sufficient to calculate the terms described in the 6th step of Figure 
1.  These terms are then used to quantify the expression of the element internal forces in the 
7th step of Figure 1.  

3 CONSTITUTIVE RELATIONS 

The material nonlinearity of the RCFT member is simulated employing a fiber-based 
distributed plasticity approach.   The element cross-sections located at the interpolation points 
are divided into individual steel and concrete fibers.  Each material fiber is associated with a 
cyclic constitutive relation that is traced throughout the analysis. 

The confinement in RCFT members is not considered to cause an enhancement in the 
compressive strength of concrete.  However, the ductility achieved by the concrete core is 
significantly improved.  In this research, the uniaxial cyclic concrete model by [9] is adapted 
for RCFT members.  Envelope curves define the boundaries of the stress-strain response in 
tension and in compression.  The stress-strain response ranging from the compression to 
tension envelope is represented through connecting curves.  Transition curves simulate the 
shift between the connecting curves going in opposite directions.  The negative envelope 
curve of RCFT members were derived by [10] based on the axially-loaded column tests in the 
literature.  An ascending stress-strain response similar to that of plain concrete is assumed 
until the attainment of the peak compressive strength.  The ascending response is followed by 
a linear softening region where the degradation slope is derived as a function of the 
compressive strength of the concrete core and slenderness of the steel tube.  At high strain 
levels, the compressive envelope curve is assumed to undergo a constant stress region.  The 
cyclic rules represented by the connecting and transition curves are kept largely as provided 
by [9].  However, the existing cyclic rules were augmented through introducing several new 
rules to capture the complex strain histories that RCFT members experience during quasi-
static and dynamic loading conditions.  For example, new unloading and reloading curves are 
introduced as presented in Figure 2, which define the cyclic rule following an unloading type 
response at the strain levels beyond the latest unloading strain prior to reaching to the target 
strain on the envelope curves. 
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Figure 1: Determination of internal element forces. 

 
Figure 2: Unloading response between the latest unloading points and the envelope curves. 

The uniaxial bounding surface model by [11] is adopted to simulate the cyclic stress-strain 
response of the steel tube of RCFT members.  The phenomena of gradual stiffness reduction, 
reduction in the elastic zone, and the Bauschinger effect are accounted for in the model.    The 
scope of the current research study is limited to RCFT members having cold-formed steel 
tubes.  Therefore, the model by [11] was modified to include the effect of residual stresses by 
introducing a different initial plastic strain (ε po ) for the flat and corner regions of the steel 

tube, as shown in Figure 3.  Local buckling of the steel tube is accounted for assuming a 
linear strength degradation once the plastic strain (ε p ) exceeds a limiting value ofε plb  as can 

be seen in Figure 3. 

4 VERIFICATION STUDIES 

The mixed finite element formulation developed for RCFT beam-columns is implemented 
in [12] along with the steel and concrete cyclic constitutive relations.  In addition, a steel 
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beam-column element is also developed and implemented using the mixed finite element 
principles to serve as girders in composite frames. 

  

Figure 3: Residual stress and local buckling behavior of the steel tube.  

A wide range of experiments on RCFT members and frames were used to verify the 
formulation; five are reported here.  The first verification study is conducted on a non-
proportionally loaded RCFT beam-column tested by [13].  The specimen is subjected to a 
constant axial load and uniform bending moment.  Pinned and roller support conditions are 
introduced at the ends of the specimens.  The analysis is performed using the Newton-
Raphson solution scheme with constant displacement arc-length method near the limit point 
of the analysis [8].  In Figure 4, the comparison of experimental and computational results is 
presented. The measured material and geometric properties of the specimens are also given 
including yield strength of the steel tube (f y ), compressive strength of concrete (f c' ), depth 

( D ) over thickness (t ) ratio, length (L ) over depth ratio (D ), and axial load ratio (P Po/ ).  
It is found that using 2 elements per member with 3 integration points produced satisfactory 
results.  The second verification study is performed on a proportionally-loaded simply-
supported RCFT column, where two steel girders are connected at the mid-height through 
shear tabs [14].  The loading condition involves an axial loading at the top of the RCFT 
column that is increased in proportion to the shear loading acting on both of the steel girders.  
The shear loading is transferred to the concrete core through the interface of the steel tube and 
the concrete core.  In Figure 4, the comparison of the slip response along the element length is 
presented.  The mesh size is determined based on the reported slip data.  For an analysis 
conducted with 10 elements and 3 integration points, a good correlation is achieved between 
the experimental and computational results.  Quasi-static cyclic simulations are then shown 
for two RCFT specimens from the literature [15-16].  The first specimen is a 3D subassembly 
with steel girders framing into an RCFT beam-column in two perpendicular directions 
simulating a 3D loading condition [16].  A pinned-RCFT column is subjected to a constant 
axial load at the top.  A constant gravity load is applied on to the steel girder framing to the 
RCFT column in the out-of-plane direction.  Antisymmetric cyclic shear loading is generated 
through the steel girders that are in plane with the RCFT column.  The steel girders are 
modeled with 1 element and 3 integration points and the RCFT column is simulated through 2 
elements and 3 integration points.  The cyclic shear load vs. drift rotation response obtained 
from the analysis and the experiment exhibits a strong correlation as shown in Figure 5.  A 
portal frame specimen having two RCFT columns and a steel girder in between is analyzed 
under constant axial load and cyclically applied shear loading, putting the columns into 
double curvature [16].  Both the RCFT columns and the steel girder are modeled using 3 
elements and 3 integration points.  As can be seen from Figure 5, the analysis estimated the 
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experimental shear vs. drift ratio response with good accuracy.  The final verification example 
involves a nonlinear time-history analysis of an approximately half-scale multistory RCFT 
frame by [17] as portrayed in Figure 6.  The structure was subjected to acceleration records 
using the pseudo-dynamic testing method.  In the analysis model, 3 elements per member 
with 3 integration points and 4 elements per member with 3 integration points are used for the 
RCFT columns and steel girders, respectively.  The Newmark-Beta (γ = 0.5, β = 0.25) time 
integration method is employed to solve for the response of the structure.  The 1994 
Northridge-Canoga Park acceleration record scaled to the design basis response spectra is 
applied to the structure.  The mass of the structure is assumed to be lumped to the nodes of the 
leaning column at the story heights.  The leaning column is connected to the structure through 
rigid links attached to the mid-point of the girders at the both bays of the structure.   Stiffness 
and mass proportional damping are introduced with proportionality factors of 0.001194 and 
0.154667, respectively, as recommended by [17].  The measured geometric and material 
properties of structural members are utilized in the analysis.  The comparison of experimental 
and computational results is performed with respect to story shear vs. drift response of the 
structure.  As can be seen from Figure 7, good correlation is achieved between the two sets of 
the data for 1st and 2nd story of the structure. 

 
Figure 4: Non-proportionally loaded RCFT beam-columns. 

 
Figure 5: Non-proportionally loaded RCFT beam-columns. 

5 CONCLUSIONS 

A new mixed finite element formulation is introduced for fully nonlinear static and 
dynamic analysis of RCFT frames.  The following remarks can be inferred from the analysis 
results using the proposed formulation: 

- The mixed finite element formulation is capable of producing accurate and robust 
simulations of RCFT beam-columns experiencing inelastic curvatures.  Utilizing 2 
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finite elements per member with 3 interpolation points often yielded satisfactory 
comparisons with the experiments both in the hardening and softening regions of the 
load deformation response.   

- The constitutive relations adopted for the steel tube and the concrete core capture the 
limit states of concrete cracking, concrete crushing, and local buckling of the steel 
tube with acceptable accuracy.  They are found to be robust even under complicated 
strain histories resulting from the irregularity of the ground motion records. 

- This formulation is suitable for analyzing complete three-dimensional composite 
frame structures, including either braced or unbraced, subjected to static or transient 
dynamic loading.  The formulation includes modeling of differential slip between the 
steel tube and concrete core in the RCFT, which is particularly important in the 
connection regions of braced frames.     

 
Figure 6: RCFT test structure by Herrera [17]. 

 
Figure 7: Story shear vs. story drift response. 
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